CMP-based Gate-Last High-K Integration

Ralf Endres, Frank Wessely and Udo Schwalke
Institute for Semiconductor Technology and Nanoelectronics, Darmstadt University of Technology
Schlossgartenstr. 8, 64289 Darmstadt, Germany
Tel: +49 6151 16-3933, Fax: +49 6151 16-5233,
e-Mail: endres@iht.tu-darmstadt.de

Keywords– high-K dielectrics, chemical mechanical polishing (CMP), process integration, damascene metal gate technology, e-Beam lithography

Ever increasing gate leakages through ultra-scaled SiO2 gate dielectrics have led to extensive investigation of alternative materials with higher dielectric permittivity (high-K) in order to extend the unprecedented growth of IC complexity of the last four decades into the future.

However, high temperature annealing and aggressive RIE was found to degrade the initial quality of the sensitive high-K gate stack [1]. In order to minimize process induced oxide damage, we have integrated high-K dielectrics into a “gentle” damascene metal gate technology by means of chemical mechanical planarization (CMP) [2].

The major process steps are shown in Fig. 1. Initially, dummy gate stacks are formed conventionally including a self-aligned S/D ion implantation (Fig. 2). After PECVD oxide deposition and 1000°C RTA anneal the oxide is planarized by CMP down to the gate level and the dummy gates are removed completely by wet chemical etching, leaving a self-aligned imprint of the gate stack on the Si-wafer. Subsequently, the high-k gate dielectric is grown by MBE (crystalline Gd2O3 layers of 5.3 nm and 13.5 nm physical thickness) or evaporated (HfO2 layers with 3.0 nm physical thickness and 0.8 nm SiO2 interfacial layer). In addition, wafers with conventional SiO2 are fabricated as a reference. Tungsten is deposited on top of the gate dielectrics and CMP is used to pattern the damascene metal gates. Standard back-end processing completes the fabrication.

The fabricated long-channel devices are fully functional (L>4µm). Typical output characteristics are shown for HfO2-MOSFETs (Fig. 4) and Gd2O3-MOSFETs (Fig. 5).

Current work includes scaling down the process to the 100 nm regime. We have successfully structured dummy gates on SOI-substrates by means of e-beam lithography (Fig 2b) and we expect functional devices with high-K metal gate stack soon.

For the first time, we have successfully integrated novel high-K gate dielectrics with EOT down to 1.9 nm in a damascene metal gate process. Since the harsh processing is done prior to high-K deposition, PIOD-effects are minimized and the initial material quality of the crystalline high-K gate dielectric is largely preserved.

As a universal platform, the replacement gate technology provides the possibility of investigations of various gate dielectrics, metal gate materials and substrates and their combinations directly at the device level.

REFERENCES

FIGURES

Fig. 1: Main process modules of the replacement gate technology.

Fig. 2: Atomic force microscopy (AFM) image of a dummy gate structures produced with light optical lithography (a) and electron beam lithography (b).

Fig. 3: nMOSFET with high-K Gd$_2$O$_3$ gate dielectric and tungsten gate electrode realized with the replacement gate process (gate length $L= 4 \, \mu m$ and gate width $W= 100 \, \mu m$).

Fig. 4: Output characteristics of damascene metal gate HfO$_2$ nMOSFET.

Fig. 5: Output characteristics of damascene metal gate Gd$_2$O$_3$ nMOSFET.